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Multiple-relaxation-time lattice-Boltzmann model for multiphase flow
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The lattice-Boltzmann method has shown promise in simulating multiphase flows. However, when using the
Bhatnagar-Gross-KrooBGK) collision operator and polynomial equilibria, numerical stability problems have
been shown to occur as the relaxation time is decreased. Some authors have suggested the use of multiple-
relaxation-time(MRT) models in lieu of the BGK collision operator, which employs a single relaxation time,
to enhance numerical stability. In this paper, a MRT lattice-Boltzmann model for multiphase flow is developed
and evaluated for accuracy in several test problems including oscillating liquid cylinders and capillary waves.
It is shown that the MRT model is able to achieve numerically stable results at lower viscosities relative to the
corresponding BGK model.

DOI: 10.1103/PhysRevE.71.036701 PACS nunierd7.11+j, 47.55.Kf

I. INTRODUCTION multiple relaxation times for single-phase flojds-13 and
o ) have shown increased numerical stability for such flows with
One significant advantage of the lattice-Boltzmannygper tuning of the relaxation times. The use of MRT mod-
method(LBM) over traditional Navier-Stokes computational g|s for these flows allows for independent adjustment of bulk
methods is its ability to model multiphase flows based uporyng shear viscosities and for nonunity Lewis numgadd.

physics at a mesoscopic le\@-3]. Traditional front captur- |, this paper, a MRT lattice-Boltzmann model for multiphase
ing methods such as level sets and volume of flMOF) o is developed.

require interface reconstruction in order to determine the cur- |, gec. |1 a two-phase MRT lattice-Boltzmann model is

vature of the interface and in turn the influence of Surfacedeveloped. In Sec. Ill, the model is extended to an index
tension on the fluid momentuM]. Front tracking methods  f,nction approach similar to Het al.[1]. The hydrodynamic
also use the curvature of the interface to add a surface forcgqyations corresponding to the lattice-Boltzmann model are
between liquids and gasgS]. The use of surface forces is a gerived in Sec. IV. In Sec. V, the model is evaluated for
particular problem when trying to determine the curvature ataccuracy on several problems including oscillating liquid

a singular_point on an interface as often occurs in liquideyjinders and capillary waves. The paper is concluded in
breakup. Therefore, the LBM is an attractive alternative.  gg¢ .

However, when using the Bhathagar-Gross-KroBIGK)
collision operator, which has a single relaxation time, and a  Il. TWO-PHASE, MULTIPLE-RELAXATION-TIME
Taylor series expansion of the Maxwell-Boltzmann equilib- LATTICE-BOLTZMANN MODEL
rium distribution function for the equilibria, there exists a Th . Bol . ith a forci .
limitation. At low values of fluid viscosity, the method is . e continuous Boltzmann equation with a forcing term s
numerically unstable. While the cause of the numerical in9tven by
stabilities in these lattice-Boltzmann models is still an open F
debate in the literature, sonié] have attributed them to the Gf+E- Vit — V. =Qy, (1)
nonexistence of an H theorem. There exist two schools of p
thought on how to overcome numerical instabilities. The firstwheref is the probability distribution functiorg is the par-
[6—8] suggests using nonpolynomial equilibrium distribution ticle velocity, F is a forcing termyp is the density, and)q
functions, but these methods have been shown to dramatis the change due to collisions. The gradient with respect to
cally increase the computational requiremdi®sand some-  particle velocity in two-dimensional space can be approxi-
times lead to incorrect macroscopic equatiph@|. The par- mated by[2]
ticular problem with entropic models is that the transport
coefficients in these models are not constant, and they V. f=V,MB=- MfMB’
strongly depend on local velocity. The other schfidl,12] RT

promotes the use of m“'“F"e Fe'axaFiP_” times _in order 10,;herefM8 js the Maxwell-Boltzmann distribution function,
reduce the growth of numerical instabilities. In this work, we

. is the macroscopic velocity is the gas constant, andis
will adopt the latter appr(_)ach. L . the temperature. In order to convert Ed) into an LBM
In this paper, a multiple-relaxation-timgVRT) lattice 1 e the equation must be integrated in time. The advec-
Sion terms are integrated along the characteristic directions
PAAd the collision and forcing terms are integrated using ex-
plicit Euler and trapezoidal methods, respectively. Then the
equations are discretized into a velocity set. This yields the
*Electronic address: michael.e.mccracken@exxonmobil.com  relationship[2]

(2)

authors have suggested using a collision operator based u
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F.(e —
£+ €,8,1+ 8) = 1,0 = ey + [+ 0,8,1+ &) P& we (5)
2 pRT
+ fi(x,t)], (3) In the BGK model 2], the relaxation matrix\ is a diagonal

matrix with elements of 1#, where 7 is the dimensionless
relaxation time. In the MRT model, the relaxation matrix will
be a full matrix. The collision term in Eq3) is first order,
where but will result in second-order accuracy at the macroscopic
level once numerical diffusion is incorporated into the vis-
cosity. The method is overall first order in time and second
order in space. The discretized velocity sgis given by the

Qo6 =—A(f =19, (4)  following for the two-dimensional nine-velocityD2Q9
model:
|
p
(0,0, a=0,
(cos((a_1)7T),sin<(a_1)7r>)c, a=1-4,
e, =9 2 2 (6)

\’E(cos<w + 7—T>,sin<w + 7—7))0, a=5-8,
L 2 4 2 4

where c is related to the lattice spacing Wz 8,/ 5. The ra e _ (f _ge F
speed of sound;, is ¢/+3 and is related to the universal gas falx + @adut+ &) =X, ; Aailfi= 15+ af,

constant byRT=c2. In Eq. (5), f} represents the changes to

the distribution function due to the forcing terfn In this - 1@2 A fF (10)
work, we use the mean-field approximation of van der Waals 27

[14] to model the intermolecular attractidh and an exclu- _ ) _
sion volume ternF,, [15] to account for the increased prob- ThiS €quation can be mapped onto moment space by multi-

ability of collision. Other authors have employed the sameP!Ying through by a transformation matrix to obtain

approach1,2,16-18. F may be written as ~ ~ S R
falx + €0t + 8) = f(x,1) = 2 Agi(fi = 79 + 4fF
i

F=Fs+Fe,=xkpVV%-Vy, (6a)
where ¢ is the nonideal part of the equation of state, —1@2/& FF (11)
y=p-pRT. In this work, the Carnahan-Starling equation of 2 e

state[19] was employed—i.e.,

1+bpl4 +(bpla)2 - (bpl4)® o, where f=Tf, A=TAT"%, and f*=TfF. The transformation

(7) matrix used in this work is similar to that employed by La-

p(p) = pRT

(1 -bpl4)® , llemand and Lud11] and has the form
with a=b=4. Herep is the pressure. A Taylor series expan- TT=1¢pl,<el <€, (i) 4T, Givls (Tl (P Pl (12)
sion of the Maxwell-Boltzmann distribution is used for equi- Pl (e (&1, (1l (@ Jy' % Pt pxy|
libria and is given by where
—la [0
e,-u (e,-w? u-u o) = e’ (133
fa =wop| 1407 +(2(aRT))2 “wr  ®
€)=~ de.|*+3(e5+ €5, (13b)
where w,=4/9 for «=0, w,=1/9 for a=1-4, andw,
=1/36 fora=5-8.Equation(3) is implicit. In order to main- 21 9
tain an explicit scheme the following variable is introduced: €)= 4le.|° - E(ei,x-'- ei,y) + E(ei,x"’ ei,y)zl (139
— 1
f,=f,- Efiﬁl. 9 i = €axo (13d)
Using Eq.(9), Eq. (3) is rewritten as oo =1 5le,|°+ 3(e§vx+ eiy)Jea,x, (13¢
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liya = €ays (13f)
|ay)a = 1= 5leal* + 3(65  + €, ) ey, (139
|pxx>a = ezzy,x - ei,y’ (13h)
Pxya = EaxCay- (13i)
For the case where=1, Eq.(12) yields
1 1 1 1 11 1 1 1
-4 -1 -1 -1-12 2 2 2
4 -2 -2 -2 -21 1 1 1
0O 1 0-1 01 -1 -1 1
T=| 0-2 0 2 O01-1 -1 1.
0O 0 1 0-11 1 -1 -1
0O 0-2 0 21 1 -1 -1
0 1 -1 1 -120 0 0 O
0O 0 0 O 01 -1 1 -1
(14)
The equilibrium in moment spacé?q, is given by
o9 T=[p, €% 4, 05y, 01, P PSS, (15)

wherep is the densityj, andj, are the momentum fluxes—
i.e., jx=pu—and the equilibrium values can be found from

the expressions

1 1 ., .
eeq=Za2p+ 672(J§+l§)/f>, (163
o= Tap+ (iZ+io/ (16b)
_4a3p 674 Jx Jy P,
eq_l :
Ox _EClJX' (16C)
eq_l :
Gy = 5Culy. (164
0= 22— (168
xx_zyljx ]y P
eq_3 i
Pxy = 573(ijy)/P- (16f)

In this work, the constants in Eq&l6a and (16b) are a,=
-8, az=4, c1=-2, y1=y3=2/3, y,=18, andy,=-18. These
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fed=T-1fea= B, 17
The relaxation matrixA in moment space, which appears in
Eq. (11), is a diagonal matrix given by

A = diad s, S, S3, 54,5, 56,57, 58, o) (18
whose elements represent the inverse of the relaxation time
for the transformed distribution functiohas it is relaxed to

the equilibrium distribution function in moment spadé&d.
Even though the values @f j,, andj, do not change in the
relaxation process, the values sf, s,, and sz should be
nonzero in order to maintain the influence of the trapezoidal
integration in Eq.(3). Notice that, for example, irrespective
of the value ofs,, s;(p—p)=0. For equal weighting at both
the current time and location and the subsequent time and
location, s;=s5,=5¢=1. In this work,s,=1.64, 53=1.54, 55
=s,=1.7, andsg=sy=1/7, wherer is the relaxation time in
the BGK model and related to the viscosity by

15
v= 7'—5 Csoy,

as demonstrated in Sec. IV. The macroscopic properties can
be found from the summations

p=2f,= 21,

(19

(20)

— 1
pu=>fe,=> fe,+ EFat, (21)

which are analogous t@:?lzf_l, puX:ﬂ:f_4+%§ﬁF, and

puy:fG:f6+%5tfg. The property of surface tension is depen-
dent on the constant in Eg. (6), which determines the mag-
nitude of the force. Zhanet al.[18] have used the following
integral relationship to analytically relate surface tension

and «:
o 2
O'=K|(a)=KJ <@> dz,
s \0Z

wherez is a direction normal to a flat interface.

The model discussed in this section satisfies the correct
hydrodynamic equations for two-phase, viscous flow. How-
ever, the model is prone to numerical instabilities. These in-
clude unexpected phase change—i.e., liquid condensation—
when relatively large forces are applied such as with gravity
in Rayleigh-Taylor instabilities. Also, the model is inconve-
nient to apply when the liquid and gas densities are changed
because the equation of state must be altered for each sce-
nario. This is accomplished by selecting new valuea ahd
b. To overcome these challenges, we extend this model to an
index function approach similar to that of lé¢ al.[1] in the

(22)

values give the correct hydrodynamic equations as shown inext section. In this approach, the governing equations are
Sec. IV. It can be easily shown that the above choice ofimited to psuedoincompressible flow where each phase is
constants yields equilibria that are equivalent to a Taylomearly incompressible. This helps eliminate some of the nu-
series expansion of the Maxwell-Boltzmann equilibrium dis-merical instabilities due to undesired phase change. The use

tribution function in velocity space—i.e.,

of an index function allows for independent adjustment of
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the liquid and gas densities from the equation of state. The The second distribution function determines the evolution
index function is required to follow the equation of state. of the pressure and can be derived from the density distribu-

tion function f by applying the following transformation to
lIl. INDEX FUNCTION, TWO-PHASE, MRT Eq. (1) [1]:

LATTICE-BOLTZMANN MODEL

In the index function model, two different distribution 9=fRT+¥(p)I'(0), (27)

functionsh andg are employed: ondy, to track the location
of the liquid in a manner similar to level sets or VOF and the
other,g, to determine the macroscopic properties of pressure DyAp)
and momentum. There are two major advantages to using an Dt =
index function mode[1]. First, nearly incompressible two-
phase flow can be simulated by forcing the material deriva—U
tive qf v to.be Z€ro. This reduce; fluctuat|on§ in the IIqu'da trapezoidal integration on the forcing term, the pressure
density, which is often observed in other lattice-Boltzmann ' :

. e evolution equation becomes
models. Second, the numerical stability of the model can be
enhanced by using the pressure distribution function to cal-

and assuming1]

(€-u) - Vilp). (29

sing an explicit Euler integration on the collision term and

culate the velocity field. The numerical calculation¥od{p) Ja(X +€,0,t+ &) = gal(X,t) 2 Ailgi(x,t) = gfix,1)]
can lead to large errors at an interface. When using a pres- . .
sure distribution functionVy(p) is multiplied by a small + 80t * SGulixre 40y (29

parameter of the order of the Mach number. This reduces the
effects of numerical perturbations associated with calculationvhere
errors.

The indexing distribution functiom is used to track the g = (e, u) {T(WFs=[Ty(u) =W, ]V ¢(p)}, (30)
location of the liquid and gas and, therefore, only needs to ] o ] )
reproduce the correct hydrodynamic equation for continuity@nd gz is the equilibrium in velocity space. Equati¢R9)
It has been showfi] that in the Chapman-Enskog expansion€an be transformed into an explicit form by solving fpy
the surface tension force does not factor into the derivatioNvhere
of the continuity equation. The governing equation for the

indexing distribution function is given by —_. _1r¢
- - B 907 0a ™ 590 (31)
ha(X +€,8,t+ &) = h,(x,1) = 2 Ai(hi(x,t) = hf9(x,1)
i This gives
NPT D ALNT 23 a. =0.%,0) — -g°
oh" =S a2 Ay, (23 0a(X + 8,8, 1+ &) = Gu(X,1) = 2 A Gi(x,1) = g7(x,1)]
i i
where 1
o u + a9, = 502 Ad; - (32
e,—u i
he==—"5— V@), (24)
Cs Equations(23) and (32) can be transformed into moment
VB space by multiplying through by the transformation mafrix
- fL to obtain
I (u)=—". (25
p
The distributionsh,, define the indexing functiorp by ¢ ha(X + €,8,t+ 8) = ho(x,t) = 2 A[hi(x,t) = hYx, )]
i

=>,h,. The index functiong is related to the density by

interpolation. Notice tha# is a function of¢ for this forcing o1 A oae
term. We have employed a linear interpolation to determine +6th, - 5@2 Al (33
p—i.e., !
_, 97 - N . N
P =pg+ =y (PP, (26) Gu(X + .81+ 8) =0, (x, 1) = 2 Ai[gi(x,t) = §FYx,1)]
g i

where ¢, and ¢4 are the upper and lower limits for the index 1 ~

function andp, and p, are the liquid and gas densities, re- + 807 - 5@2 Ao (39
spectively. The theoretical limits for the index functigican i

be determined by Maxwell's equal-area riild. However, S

these should be calculated numerically in order to determiné N€ équilibria in moment space are

the equilibrium values of these limits. This is further dis- R .

cussed in Sec. V. g%9=RTF9+ y(p)I'(0), (35
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hea= Leq (36)
p

The value of the index function is related to the macroscopi
property of density by interpolation as shown in E26) and
by definition is

¢=2h,. (37)

The pressure and velocity are found from the moments of the
pressure distribution function—i.e.,

_ 1
p=29a—5u- V Hp) s, (39)

These can be easily converted into moment space to obtain

— RT
pRTU=2 €9, + — Fed (39)

One possible solution procedure is to calculate the mo-
ments by employing Eq$169—(16f) using the density and
velocity which are either given as initial conditions or calcu-
lated during the previous time step. Then, in order to find the
equilibrium values ofy andh in moment space use E(L5)
along with Eqs(35) and(36). The contributions due to sur-
face tension forces are found from E@84) and (30). The
values of the distribution functions at the next time step are
found using Eqs(33) and (34). These values are then em-
ployed to find the density and velocities at this time step
using Egs(26), (37), and(39).

PHYSICAL REVIEW E 71, 036701(2009

[?t = 2 Snatn.
n=0

0) —
fO = feq,

(d* € VI == 2 Auft + £,
i

1
3 fO+ (g, +e, Vv )(f&” -5 Aaifi(”) =-2A
i i

£0) = feq

(9, + BT = - ATV + 77

where I%i =T(eyl) and

FOT= [0,eV,e2Y,0,0%,0,0.",p, pi21.

XX

tions are obtained:

IV. HYDRODYNAMIC EQUATIONS

It is of interest to determine the macroscopic equations
corresponding to the discretized Boltzmann equations for the
MRT model. In this section, Chapman-Enskog expansion
terms are employed to find these equations. We use the dis-
tribution functionf in this analysis because the derivation is
more straightforward and the distribution functignis re-
lated tof via the transformation in Eq27). A similar deri-
vation could be performed using distribution functidnand
g. In fact, this has been previously performed by Zhp2@j
for the index function model of Het al. [1]. In his work
[20], the momentum equation is derived in terms of the pres-
sure and is analogous to the momentum equation derived
here, but the continuity equation contains a source term,
which is nonzero whew is not equal top. The exact deri-
vation of this source term is not clear since it involves esti-
mating the first-order expansion of the distribution function
h. Therefore, we perform this analysis using the distribution
function f and start with the expansions

fo(X+€,8,t+8) = 2 e"(G+ e, V)" (x1), (409
n=0

fa: E 8nfg1), (40b)
n=0
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atop"' Aix+ ayjy: 0,

o[ 2p+ 3(i5 + 1)1p] = — 5,6M + 6U,F, + 6U,F,

. 1k .
&tOJx+ &x|:§p+ ;X:| +07y[]x]y/p] =Fx

-ji+i?

. 1 .
- atolx"' ‘9><|:_ §p+ —P¥:| + (9y[Jny/P]

= -0 - Fo

22
X

Ix~]

o 1
= djy+ aLixylp] + &y{— Pt —pY] = -0 -

(400

. Appling the expansions in Eq40) to Eq. (3), we get the
(following relationship for the zeroth; first; and second-order
expansions ire:

(41a

(41b

£

al’| ot

(410

(423

(42b

“ “ 1\~
 fO+ (g + Eiai)(l - 5A>f<1> =-Af?, (420

(43

Writing out the equations of Eq42b) the following equa-

(448

(44b)

a'[o[p - 3(]5 + Ji)/l)] — xix— &yjy == SBeZ(l) = 6u,Fy — 6uyFy!

(440

(44d)

(44¢)

(44f)

Fy,

(449
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o 2 . 2 .
ato[(Ji - Ji)lp] + gaxjx - gayjy =~ SBpSg + Zuxe - ZuyFy!

(44h)

L i
ato[]xj ylp] + gaxjy + éaij Sgp;ly) + uyF + uxFy-

(44i)

Now writing out the equations for the conserved moments of

Eq. (420, the following are obtained:

ap=0, (453
dhix* &x{é(l - %sz)e“) + %(1 - lsg> p(xlx)}
* f9y[<1 139> pily)] 0, (45b)
atljy*'ﬂx{(l“sg)ny} E(l—%sz)e(”
;(1 - lsa) pxx] = (450

Adding Eq.(44a ande times Eq.(459 yields the continuity
equation

ap + dixt dyjy=0. (46)

Adding Eq.(44d ande times Eq.(45b) and substituting for

b, and p,, " using Eqs.(44h and (44, the following

equation is obtained:
. 1 .
Ayt Ik §P+JX/P +&y(]xjy/p)
=F, - 1(1—— ) eV - 3(1—} )ia
- 6 $2 )0 82 258 S X
Ix~1 2 . 2.
X [ZUXFX = 2UyFy - ﬁto(x—p¥> - 5 It gﬁy]y:|
_8(1_1.59)1(9 UyFy + U,Fy —at(JXJ )
278 LY P
1 1
_gaxjy_gaij .

Addmg Eq (44f) and e times Eq.(450 and substituting for
pXX andp using Eqgs.(44h) and (44i), the following equa-
tion is obtalned

(47)

. . 1
ddy + a(jxdylp) + ﬁy(gp + J§/p>

: 1 1 @, 1 1 \1
—Fy—SE 1—552 dye +8§ 1_538 S—B&X

iZ-j2\ 2 2
X | 2uF, - 2u,F, — ato(x—p1> 3 dx+ éayjy

PHYSICAL REVIEW E71, 036701(2005

1 1\1 il
ool
1 . 1 .
_éax]y_éﬁij .

In order to evaluate the order of the temne®, we rear-
range Eq.(44b) and use Eq(449 to determine&top, which
gives

(48)

1 o Bty
e(l) == 6uxe + GUYFY - 2(‘9xe + ﬁyJ y) - 3[710 1
S p
(49

Expanding the termg, jx and g, jy and using Eqs(440d and
(44f), while ignoring terms of ordeMa3 yields

tO o - UX —&X 3p+p _ay o + X | (5)

i 10 ixiy
ato(;f):zuy{—ay(émﬁ) <];>+F]. (51)

Using Egs.(50) and(51) and ignoring higher-order terms of
the formu,d,(uyj,), EQ. (49 can be written as
e = _[ 20jx~ 2‘9ny:| (52)
Equation(52) can be shown to be small in the incompress-
ible limit making this term negligible, but we shall retain this
term to illustrate how the constasj is related to the bulk

V|sc05|ty Similarly, reduced forms can be determmeq@
and px —ie.,

a _ 1 2. 2.
Pxx _5_8 — dx é]x +dy §Jy )
pxy S X 3Jy y 3JX .

These terms cannot be neglected because the 1/3 factor rep-
resents the nondimensional speed of sowdd,1/3, which
decreases the order of the terms. Now E4g) and(48) can

be rewritten as the following usirg=s9=1/7 and substitut-

ing in for F, andF,:

(53

(54)

iix * IxdUx + Jydy Uy = = b + kpdV2p + V2],

+ {0x(Oxix + dyiy), (55
Ay + Ixdly + jydyly = = ap + kpd V2p + vV?),
+ LOy(Oxdx + dyiy), (56)
wheres=46,, 1/3=cZ,
1
v:c§5t<r—5>, (57)
1
{=c, 5t<s_2 - 5) (58)
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p=cip+(p). (59 ox10°
8x107® - “
V. EVALUATION OF THE MODEL 7010
The first step in evaluating the model is to determine the
index function limits¢y and ¢, and determine the value of 6x10° 1
I(a) in EqQ. (22). Both of these can be obtained by solving a ey
“two-layer” problem where initially the fluids at two differ- o
ent densities are separated by a horizontal boundary in & axi0® | ¢
domain with periodic boundary conditions on the sides and
infinite boundary conditions on the top and bottom. The val- ~ 3x10® 74
ues of ¢ and ¢y from Maxwell’'s equal-area rule should be .
used as initial values for the index function of the corre- 219" 4
sponding fluid. The fluid is allowed to come equilibrium. ;g5 ¢ Index Function, MRT LBM
Then, the value of(a) can be determined by the numerical 1 — Laplace's Law
integration of¢ along the direction perpendicular to the in- 0 . . : : :
terface according to Eq22). The equilibrium values will 0 0.01 002 003 004 005 008
depend on the numerical scheme employed for calculatinc 1/R

the gradient and Laplacian terms in E¢G), (24), and(29).
The results from this model and other two-phase LBM mod- FIG. 1. Pressure change due to surface tension versus the in-
els have shown a large dependence on numerical schemese of radius for a 2D “drop.”
[21]. We have found that the use of a hybrid scheme for
calculating gradients produces desirable results for a wide
range of surface tension and viscosity values. In this workcompares the analytical pressure difference from Laplace’s
the Laplacian is computed using a nine-point stencil—i.e., law to that computed by the MRT model. The largest error
compared to theoretical value is 12% at £0.025 while the
other errors are under 6%.

Next, the index function MRT model is employed to solve
_ an oscillating liquid cylinder problem. An initial elliptical
A+ Abijn + Ade) * Ay ~ 2080 cross section is given to the liquid wit=0.05, 0.1, and 0.2

(60)  and liquid densities of 0.2 and 1. The density ratio is 10, and

The gradients are calculated using a hybrid method wherthe viscosity is 0.006 75 for all computations. Figure 2 illus-

the sixth-order central difference method gets 75% weighting%rates the amplitude of the oscillations with dimensionless
and is given by ime for k=0.2 andp;=0.2. Lamb[26] performed an analyti-

cal study of an invisid liquid cylinder oscillating without the
influence of an ambient gas. The frequency of oscillation
predicted by Lami§26] is given by

1
Vi = §[¢(i+1,j+l) + Pir1j-1) F Di-1j+1) + Di-1j-1)
X

1
dip=——[= Wi-zj) + Wiz — 45Wi-1j) + 451
605,

= Wisaj) + Wizl (61)

A 25% weighting is given to a fourth-order method based 1
upon Taylor series expansions in velocity space—i.e., 0.8
1 &8 0.6 1
= 2 2 e [BYX + ,8) — Ylx +2e,8)]. (62) 0.4-

368y o1

— 0.2
For the hybrid scheme the equilibrium values of the index & 0-

function limits are¢,=0.022 55 and$=0.250 08, and(4) =
=0.0152 based upon computations of the “two-layer” prob- < -0.21
lem with aa=b=4 in Eq. (7). 0.4

The surface tension predicted by E@2) can be com-

pared to the results of a numerical experimgz2—-25. A 081

computational domain of 200200 with periodic boundary -0.8 1

conditions is set up with a two-dimension&D) “drop” in R : I . . . . , .

the middle of the domain witlk=0.1, which corresponds to 0o 2 4 6 8 10 12 14 16 18
a surface tension of 0.001 52. Four different size drops are t(c/p )"

employed with radii of approximately 20, 30, 40, and 50.
After the liquid drop reaches equilibrium the surface tension FIG. 2. Amplitude of oscillation versus time for a liquid cylin-
is calculated from Laplace’s law/r=(pi,— Pou)- Figure 1 der(p;=0.2,0=0.003 04 p=0.006 75.
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8x107 1
0.8 Decay Rate:
° o6 & h/|n|=expl- 2.92E-4t ok /v (p+ pg))
=T '
6x10 0.4
— 0.2
=
8 4x107 1 = 07
L -0.2
-0.4-
2x107 1 0.6 U
@ Index function, MRT LBM 0.8 U
— Analytical - Lamb (1932) '1
7 - T T T T
OXI0F e — — B 0 2000 4000 6000 8000 10000
0x10 5x10 \ 1x10 1.5x10 le/V(p|+pg)
ol P1 r

FIG. 4. Oscillation amplitude of a capillary wave versus time
FIG. 3. Comparison of computed oscillation frequencies tousing the index function, MRT LBM(p=0.2,0,=0.06667 ¢
those predicted by Lamp26] for liquid cylinders with initially ~ =0.001 52 »=0.003 38.
elliptic cross sections.

o number. The root with positive real and imaginary parts is
w?=n(n’-1)—;, (63 the only physically meaningful solution. The decay rate and
P oscillating frequency are found from the imaginary and real

wheren=2 for an initially elliptical cross section ands the ~ parts, respectively, of the expression

equilibrium radius. Figure 3 compares the analytical solution =

of Lamb to the oscillation frequencies obtained from the n=(y?- 1)1 /k(pl—”%L_ (65)
computations. All of the oscillation frequencies are approxi- o

mately 3% lower than their corresponding analytical values.

: : . In the computations, p;=0.2, p,=0.066 67, andk
More accurate solutions are expected for computations with ) S ; 9 -
higher density ratios since the analytical solution is for os- 0:0491. The viscosity is varied from=0.1 to 0.000 85,

N : ; : : - and the surface tension is=0.001 52 for all computations.
cillations without an ambient fluid. However, higher density PR . ;
ratios were not numerically stable for the viscosity employedThe domain size is 129129. Figure 4 shows the change in

(»=0.006 75. This limitation on density ratio is not a prob- amplitude of the capillary wave along with the decay rate

lem specific to the work here, but is well recognized as oneWhen »=0.003 38. Figure 5 compares the oscillation fre-

of the challenges with the LBM methods for two-phase flow, d4ehcy and decay rate computed by the index function, MRT

M - "LBM, and the index function, BGK LBM 1], to those pre-
Premr_1ath[27]. has suggested _that the ngmerpal |.nstab|I|ty icted by Chandrasekhar for the various viscosities versus
associated with the LBM at higher density ratios is relate

the pseudocompressible nature of the method. This appearrée ratio of Reynolds to capillary numbes=o/[K(p

: : L
to cause small fluctuations in density to lead to quctuations;pg) v tBOth.tSOdS%I/S arfr?".:t the oscnlaé[!on freqlutta_ncly ar|1d
in velocity, which in turn lead to instabilities. The use of ecay rate within 5% o their corresponding analytical Solu-

multiple relaxation times may increase the sensitivity of the

density ratio to numerical stability. ox10™*

The index function, MRT model is also employed to _ sx10*{ *
simulate capillary waves with a small amplitude and long $ 710 ]
wavelength. Other authold8,25 have performed similar & —
numerical experiments. Initially, a sinusoidal perturbation 3 @ &x10* - ——nelyical pasilltreg;
with an amplitude of 5% of the wavelength is given to a §§ e Einalytieal dacayats
liquid. Under the influence of surface tension, the wave os-g S ¢ MRT LBM oscill. freq.
cillates with a decaying amplitude due to viscosity until the < § 4x10* = MRT LBM decay rate
fluid is at rest. Chandrasekhi28] derived an analytical so- -% 8 sxi0* A © BGK LBM oscill. freq.
lution for the oscillation frequency and decay rate of wave i o O BGK LBM decay rate
amplitude. The solution involves finding the roots of the & = .
equation 1x10% 1 TR

" Tl M- g
Y+ dagany® + 2(1 - 6oy ap)y? - 41 - B an)y 2l 151 1 e 10t - 1'05. 138

s (Re/Ca)

+ (1 - 461(1&’2) + O, (64)

0- —
k(p + pg?
(p pg)y FIG. 5. Oscillation frequency and decay rate versus ratio of
where ay=p/(pj+pg), az=pyl(pi+pg), andk is the wave Reynolds to capillary numbers.
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tions for s<161. However, the BGK model is numerically via a multiscale expansion. The index function, MRT model
unstable for capillary wave simulations with<0.0135. The was then evaluated for accuracy on several test problems
MRT model gives stable solutions far=0.000 85 for this including Laplace’s law for 2D “drops,” oscillating liquid
computational problem or about a factor of 16 times lowercylinders, and capillary waves. The pressure change across
than the BGK model. the interface of the 2D “drops” was within 6% of the pre-
dicted value based upon Laplace’s law for most cases. The
oscillation frequency of the liquid cylinders was within 4%
_ of the analytical solution for all computations. The capillary
_In this paper, we have proposed a MRT LBM model foryave computations illustrated the enhanced numerical stabil-
simulating multiphase flows. The model uses a collision Maity of the MRT model compared to the corresponding BGK
trix for calculating the effects of collisions in lieu of the model in that the MRT model was able to achieve stable
single-relaxation-time BGK model. The use of multiple re- regyts at lower viscosities. Both the MRT and BGK models
laxation times allows for different physical quantities to be predicted oscillation frequencies and decay rates within 8%
adjusted independently. It has been suggested that the propgr their analytical values fos< 160 wheres is the ratio of
gation of sound waves in the BGK model leads to numericaheynmds to capillary number. The MRT model proposed in

ation times for the shear and bulk viscosities as well adjustiiquid breakup[21].

able parameters for heat flux coefficients. Enhanced numeri-
cal stability has been observed by optimally tuning these
constants. For ease of use in practical computations, an index
function form of the MRT model was also developed. This

VI. DISCUSSION AND CONCLUSIONS
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