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The lattice-Boltzmann method has shown promise in simulating multiphase flows. However, when using the
Bhatnagar-Gross-KrooksBGKd collision operator and polynomial equilibria, numerical stability problems have
been shown to occur as the relaxation time is decreased. Some authors have suggested the use of multiple-
relaxation-timesMRTd models in lieu of the BGK collision operator, which employs a single relaxation time,
to enhance numerical stability. In this paper, a MRT lattice-Boltzmann model for multiphase flow is developed
and evaluated for accuracy in several test problems including oscillating liquid cylinders and capillary waves.
It is shown that the MRT model is able to achieve numerically stable results at lower viscosities relative to the
corresponding BGK model.
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I. INTRODUCTION

One significant advantage of the lattice-Boltzmann
methodsLBM d over traditional Navier-Stokes computational
methods is its ability to model multiphase flows based upon
physics at a mesoscopic levelf1–3g. Traditional front captur-
ing methods such as level sets and volume of fluidsVOFd
require interface reconstruction in order to determine the cur-
vature of the interface and in turn the influence of surface
tension on the fluid momentumf4g. Front tracking methods
also use the curvature of the interface to add a surface force
between liquids and gasesf5g. The use of surface forces is a
particular problem when trying to determine the curvature at
a singular point on an interface as often occurs in liquid
breakup. Therefore, the LBM is an attractive alternative.

However, when using the Bhathagar-Gross-KrooksBGKd
collision operator, which has a single relaxation time, and a
Taylor series expansion of the Maxwell-Boltzmann equilib-
rium distribution function for the equilibria, there exists a
limitation. At low values of fluid viscosity, the method is
numerically unstable. While the cause of the numerical in-
stabilities in these lattice-Boltzmann models is still an open
debate in the literature, somef6g have attributed them to the
nonexistence of an H theorem. There exist two schools of
thought on how to overcome numerical instabilities. The first
f6–8g suggests using nonpolynomial equilibrium distribution
functions, but these methods have been shown to dramati-
cally increase the computational requirementsf9g and some-
times lead to incorrect macroscopic equationsf10g. The par-
ticular problem with entropic models is that the transport
coefficients in these models are not constant, and they
strongly depend on local velocity. The other schoolf11,12g
promotes the use of multiple relaxation times in order to
reduce the growth of numerical instabilities. In this work, we
will adopt the latter approach.

In this paper, a multiple-relaxation-timesMRTd lattice
Boltzmann model for multiphase flow is developed. Previous
authors have suggested using a collision operator based upon

multiple relaxation times for single-phase flowsf11–13g and
have shown increased numerical stability for such flows with
proper tuning of the relaxation times. The use of MRT mod-
els for these flows allows for independent adjustment of bulk
and shear viscosities and for nonunity Lewis numbersf11g.
In this paper, a MRT lattice-Boltzmann model for multiphase
flow is developed.

In Sec. II, a two-phase MRT lattice-Boltzmann model is
developed. In Sec. III, the model is extended to an index
function approach similar to Heet al. f1g. The hydrodynamic
equations corresponding to the lattice-Boltzmann model are
derived in Sec. IV. In Sec. V, the model is evaluated for
accuracy on several problems including oscillating liquid
cylinders and capillary waves. The paper is concluded in
Sec. VI.

II. TWO-PHASE, MULTIPLE-RELAXATION-TIME
LATTICE-BOLTZMANN MODEL

The continuous Boltzmann equation with a forcing term is
given by

]t f + j · = f +
F

r
· =j f = Vcoll, s1d

where f is the probability distribution function,j is the par-
ticle velocity,F is a forcing term,r is the density, andVcoll
is the change due to collisions. The gradient with respect to
particle velocity in two-dimensional space can be approxi-
mated byf2g

=j f < =j fMB = −
sj − ud

RT
fMB, s2d

wherefMB is the Maxwell-Boltzmann distribution function,u
is the macroscopic velocity,R is the gas constant, andT is
the temperature. In order to convert Eq.s1d into an LBM
model, the equation must be integrated in time. The advec-
tion terms are integrated along the characteristic directions
and the collision and forcing terms are integrated using ex-
plicit Euler and trapezoidal methods, respectively. Then the
equations are discretized into a velocity set. This yields the
relationshipf2g*Electronic address: michael.e.mccracken@exxonmobil.com
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fasx + eadt,t + dtd − fasx,td = Vcolldt +
dt

2
ffa

Fsx + eadt,t + dtd

+ fa
Fsx,tdg, s3d

where

Vcolldt = − Lsf − feqd, s4d

fa
F =

F · sea − ud
rRT

fa
MB. s5d

In the BGK modelf2g, the relaxation matrixL is a diagonal
matrix with elements of 1/t, wheret is the dimensionless
relaxation time. In the MRT model, the relaxation matrix will
be a full matrix. The collision term in Eq.s3d is first order,
but will result in second-order accuracy at the macroscopic
level once numerical diffusion is incorporated into the vis-
cosity. The method is overall first order in time and second
order in space. The discretized velocity setea is given by the
following for the two-dimensional nine-velocitysD2Q9d
model:

ea =5
s0,0d, a = 0,

XcosS sa − 1dp
2

D,sinS sa − 1dp
2

DCc, a = 1 – 4,

Î2XcosS sa − 5dp
2

+
p

4
D,sinS sa − 5dp

2
+

p

4
DCc, a = 5 – 8,6 s6d

where c is related to the lattice spacing byc=dx/dt. The
speed of sound,cs, is c/Î3 and is related to the universal gas
constant byRT=cs

2. In Eq. s5d, fa
F represents the changes to

the distribution function due to the forcing termF. In this
work, we use the mean-field approximation of van der Waals
f14g to model the intermolecular attractionFs and an exclu-
sion volume termFev f15g to account for the increased prob-
ability of collision. Other authors have employed the same
approachf1,2,16–18g. F may be written as

F = Fs + Fev = kr = ¹2r − = c, s6ad

where c is the nonideal part of the equation of state,
c=p-rRT. In this work, the Carnahan-Starling equation of
statef19g was employed—i.e.,

psrd = rRT
1 + br/4 + sbr/4d2 − sbr/4d3

s1 − br/4d3 − ar2, s7d

with a=b=4. Herep is the pressure. A Taylor series expan-
sion of the Maxwell-Boltzmann distribution is used for equi-
libria and is given by

fa
MB = warF1 +

ea ·u

RT
+

sea ·ud2

2sRTd2 −
u ·u

2RT
G , s8d

where wa=4/9 for a=0, wa=1/9 for a=1–4, and wa

=1/36 fora=5–8.Equations3d is implicit. In order to main-
tain an explicit scheme the following variable is introduced:

f̄a = fa −
1

2
fa
Fdt. s9d

Using Eq.s9d, Eq. s3d is rewritten as

f̄asx + eadt,t + dtd = f̄asx,td − o
i

Lais f̄ i − f i
eqd + dt fa

F

−
1

2
dto

i

Lai f i
F. s10d

This equation can be mapped onto moment space by multi-
plying through by a transformation matrixT to obtain

f̄
ˆ

asx + eadt,t + dtd = f̄
ˆ

asx,td − o
i

L̂ais f̄
ˆ
i − f̂ i

eqd + dt f̂a
F

−
1

2
dto

i

L̂ai f̂ i
F, s11d

where f̄
ˆ
=T f̄, L̂=TLT−1, and f̂F=T fF. The transformation

matrix used in this work is similar to that employed by La-
llemand and Luof11g and has the form

TT = bkru,keu,ke2u,k jxu,kqxu,k j yu,kqyu,kpxxu,kpxyuc, s12d

where

url = ueau0, s13ad

uela = − 4ueau0 + 3sea,x
2 + ea,y

2 d, s13bd

ue2la = 4ueau0 −
21

2
sea,x

2 + ea,y
2 d +

9

2
sea,x

2 + ea,y
2 d2, s13cd

u jxla = ea,x, s13dd

uqxla = b− 5ueau0 + 3sea,x
2 + ea,y

2 dcea,x, s13ed
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u j yla = ea,y, s13fd

uqyla = b− 5ueau0 + 3sea,x
2 + ea,y

2 dcea,y, s13gd

upxxla = ea,x
2 − ea,y

2 , s13hd

upxyla = ea,xea,y. s13id

For the case wherec=1, Eq.s12d yields

T = 3
1 1 1 1 1 1 1 1 1

− 4 − 1 − 1 − 1 − 1 2 2 2 2

4 − 2 − 2 − 2 − 2 1 1 1 1

0 1 0 − 1 0 1 − 1 − 1 1

0 − 2 0 2 0 1 − 1 − 1 1

0 0 1 0 − 1 1 1 − 1 − 1

0 0 − 2 0 2 1 1 − 1 − 1

0 1 − 1 1 − 1 0 0 0 0

0 0 0 0 0 1 − 1 1 − 1

4 .

s14d

The equilibrium in moment space,f&eq, is given by

f&eq T= fr,eeq,e2 eq, jx,qx
eq, j y,qy

eq,pxx
eq,pxy

eqg, s15d

wherer is the density,jx and j y are the momentum fluxes—
i.e., jx=rux—and the equilibrium values can be found from
the expressions

eeq=
1

4
a2r +

1

6
g2s jx

2 + j y
2d/r, s16ad

e2 eq=
1

4
a3r +

1

6
g4s jx

2 + j y
2d/r, s16bd

qx
eq=

1

2
c1jx, s16cd

qy
eq=

1

2
c1j y, s16dd

pxx
eq=

3

2
g1s jx

2 − j y
2d/r, s16ed

pxy
eq=

3

2
g3s jxj yd/r. s16fd

In this work, the constants in Eqs.s16ad and s16bd area2=
−8, a3=4, c1=−2, g1=g3=2/3, g2=18, andg4=−18. These
values give the correct hydrodynamic equations as shown in
Sec. IV. It can be easily shown that the above choice of
constants yields equilibria that are equivalent to a Taylor
series expansion of the Maxwell-Boltzmann equilibrium dis-
tribution function in velocity space—i.e.,

feq= T−1f̂ eq= fMB. s17d

The relaxation matrixL̂ in moment space, which appears in
Eq. s11d, is a diagonal matrix given by

L& = diagfs1,s2,s3,s4,s5,s6,s7,s8,s9g, s18d

whose elements represent the inverse of the relaxation time

for the transformed distribution functionf̂ as it is relaxed to

the equilibrium distribution function in moment space,f̂ eq.
Even though the values ofr, jx, and j y do not change in the
relaxation process, the values ofs1, s4, and s6 should be
nonzero in order to maintain the influence of the trapezoidal
integration in Eq.s3d. Notice that, for example, irrespective
of the value ofs1, s1sr−rd=0. For equal weighting at both
the current time and location and the subsequent time and
location, s1=s4=s6=1. In this work, s2=1.64, s3=1.54, s5
=s7=1.7, ands8=s9=1/t, wheret is the relaxation time in
the BGK model and related to the viscosity by

n = St −
1

2
Dcs

2dt, s19d

as demonstrated in Sec. IV. The macroscopic properties can
be found from the summations

r = o
a

fa = o
a

f̄a, s20d

ru = o
a

faea = o
a

f̄aea +
1

2
Fdt, s21d

which are analogous tor= f̂1= f̄
ˆ
1, rux= f̂4= f̄

ˆ
4+ 1

2dt f̂4
F, and

ruy= f̂6= f̄
ˆ
6+ 1

2dt f̂6
F. The property of surface tension is depen-

dent on the constantk in Eq. s6d, which determines the mag-
nitude of the force. Zhanget al. f18g have used the following
integral relationship to analytically relate surface tensions
andk:

s = kIsad = kE
−`

` S ]r

]z
D2

dz, s22d

wherez is a direction normal to a flat interface.
The model discussed in this section satisfies the correct

hydrodynamic equations for two-phase, viscous flow. How-
ever, the model is prone to numerical instabilities. These in-
clude unexpected phase change—i.e., liquid condensation—
when relatively large forces are applied such as with gravity
in Rayleigh-Taylor instabilities. Also, the model is inconve-
nient to apply when the liquid and gas densities are changed
because the equation of state must be altered for each sce-
nario. This is accomplished by selecting new values ofa and
b. To overcome these challenges, we extend this model to an
index function approach similar to that of Heet al. f1g in the
next section. In this approach, the governing equations are
limited to psuedoincompressible flow where each phase is
nearly incompressible. This helps eliminate some of the nu-
merical instabilities due to undesired phase change. The use
of an index function allows for independent adjustment of
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the liquid and gas densities from the equation of state. The
index function is required to follow the equation of state.

III. INDEX FUNCTION, TWO-PHASE, MRT
LATTICE-BOLTZMANN MODEL

In the index function model, two different distribution
functionsh andg are employed: one,h, to track the location
of the liquid in a manner similar to level sets or VOF and the
other,g, to determine the macroscopic properties of pressure
and momentum. There are two major advantages to using an
index function modelf1g. First, nearly incompressible two-
phase flow can be simulated by forcing the material deriva-
tive of c to be zero. This reduces fluctuations in the liquid
density, which is often observed in other lattice-Boltzmann
models. Second, the numerical stability of the model can be
enhanced by using the pressure distribution function to cal-
culate the velocity field. The numerical calculation of=csrd
can lead to large errors at an interface. When using a pres-
sure distribution function,¹csrd is multiplied by a small
parameter of the order of the Mach number. This reduces the
effects of numerical perturbations associated with calculation
errors.

The indexing distribution functionh is used to track the
location of the liquid and gas and, therefore, only needs to
reproduce the correct hydrodynamic equation for continuity.
It has been shownf1g that in the Chapman-Enskog expansion
the surface tension force does not factor into the derivation
of the continuity equation. The governing equation for the
indexing distribution function is given by

h̄asx + eadt,t + dtd = h̄asx,td − o
i

Laish̄isx,td − hi
eqsx,tdd

+ dth
F −

1

2
dto

i

Laihi
F, s23d

where

ha
F = −

sea − ud
cs

2 · = csfdGasud, s24d

Gasud =
fa
MB

r
. s25d

The distributionsha define the indexing functionf by f
=oaha. The index functionf is related to the density by
interpolation. Notice thatc is a function off for this forcing
term. We have employed a linear interpolation to determine
r—i.e.,

rsfd = rg +
f − fg

fl − fg
srl − rgd, s26d

wherefl andfg are the upper and lower limits for the index
function andrl and rg are the liquid and gas densities, re-
spectively. The theoretical limits for the index functionf can
be determined by Maxwell’s equal-area rulef1g. However,
these should be calculated numerically in order to determine
the equilibrium values of these limits. This is further dis-
cussed in Sec. V.

The second distribution function determines the evolution
of the pressure and can be derived from the density distribu-
tion function f by applying the following transformation to
Eq. s1d f1g:

g = fRT+ csrdGs0d, s27d

and assumingf1g

Dcsrd
Dt

= sj − ud · = csrd. s28d

Using an explicit Euler integration on the collision term and
a trapezoidal integration on the forcing term, the pressure
evolution equation becomes

gasx + eadt,t + dtd = gasx,td − o
i

Laifgisx,td − gi
eqsx,tdg

+ udtga
Fusx,td + udtga

Fusx+eadt,t+dtd
, s29d

where

ga
F = sea − ud · hGasudFs − fGasud − wag = csrdj, s30d

and ga
eq is the equilibrium in velocity space. Equations29d

can be transformed into an explicit form by solving forḡa

where

ḡa = ga −
1

2
ga

Fdt. s31d

This gives

ḡasx + eadt,t + dtd = ḡasx,td − o
i

Laifḡisx,td − gi
eqsx,tdg

+ dtga
F −

1

2
dto

i

Laigi
F. s32d

Equationss23d and s32d can be transformed into moment
space by multiplying through by the transformation matrixT
to obtain

h̄
ˆ

asx + eadt,t + dtd = h̄
ˆ

asx,td − o
i

L̂aifh̄
ˆ

isx,td − ĥi
eqsx,tdg

+ dtĥa
F −

1

2
dto

i

L̂aiĥi
F, s33d

ĝ̄asx + eadt,t + dtd = ĝ̄asx,td − o
i

L̂aifĝ̄isx,td − ĝi
eqsx,tdg

+ dtĝa
F −

1

2
dto

i

L̂aiĝi
F. s34d

The equilibria in moment space are

ĝeq= RTf̂eq+ csrdĜs0d, s35d
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ĥeq=
f

r
f̂ eq. s36d

The value of the index function is related to the macroscopic
property of density by interpolation as shown in Eq.s26d and
by definition is

f = o
a

h̄a. s37d

The pressure and velocity are found from the moments of the
pressure distribution function—i.e.,

p = o
a

ḡa −
1

2
u · = csrddt, s38d

rRTu = o
a

eaḡa +
RT

2
Fsdt. s39d

One possible solution procedure is to calculate the mo-
ments by employing Eqs.s16ad–s16fd using the density and
velocity which are either given as initial conditions or calcu-
lated during the previous time step. Then, in order to find the
equilibrium values ofg andh in moment space use Eq.s15d
along with Eqs.s35d and s36d. The contributions due to sur-
face tension forces are found from Eqs.s24d and s30d. The
values of the distribution functions at the next time step are
found using Eqs.s33d and s34d. These values are then em-
ployed to find the density and velocities at this time step
using Eqs.s26d, s37d, ands39d.

IV. HYDRODYNAMIC EQUATIONS

It is of interest to determine the macroscopic equations
corresponding to the discretized Boltzmann equations for the
MRT model. In this section, Chapman-Enskog expansion
terms are employed to find these equations. We use the dis-
tribution function f in this analysis because the derivation is
more straightforward and the distribution functiong is re-
lated to f via the transformation in Eq.s27d. A similar deri-
vation could be performed using distribution functionsh and
g. In fact, this has been previously performed by Zhangf20g
for the index function model of Heet al. f1g. In his work
f20g, the momentum equation is derived in terms of the pres-
sure and is analogous to the momentum equation derived
here, but the continuity equation contains a source term,
which is nonzero whenf is not equal tor. The exact deri-
vation of this source term is not clear since it involves esti-
mating the first-order expansion of the distribution function
h. Therefore, we perform this analysis using the distribution
function f and start with the expansions

fasx + eadt,t + dtd = o
n=0

«ns]t + ea · = dnfasx,td, s40ad

fa = o
n=0

«nfa
snd, s40bd

]t = o
n=0

«n]tn
. s40cd

Appling the expansions in Eq.s40d to Eq. s3d, we get the
following relationship for the zeroth; first; and second-order
expansions in«:

fa
s0d = fa

eq, s41ad

s]t0
+ ea · = dfa

s0d = − o
i

Lai f i
s1d + fa

F, s41bd

]t1
fa

s0d + s]t0
+ ea · = dS fa

s1d −
1

2o
i

Lai f i
s1dD = − o

i

Lai f i
s2d.

s41cd

These can be easily converted into moment space to obtain

f̂ s0d = f̂ seqd, s42ad

s]t0
+ Êi]id f̂ s0d = − L̂ f̂ s1d + f̂F, s42bd

]t1
f̂ s0d + s]t0

+ Êi]idSI −
1

2
L̂D f̂ s1d = − L̂ f̂ s2d, s42cd

whereÊi =TseaiI d and

f̂ s1dT = f0,es1d,e2s1d,0,qx
s1d,0,qy

s1d,pxx
s1d,pxy

s1dg. s43d

Writing out the equations of Eq.s42bd the following equa-
tions are obtained:

]t0
r + ]xjx + ]yjy = 0, s44ad

]t0
f− 2r + 3s jx

2 + j y
2d/rg = − s2e

s1d + 6uxFx + 6uyFy,

s44bd

]t0
fr − 3s jx

2 + j y
2d/rg − ]xjx − ]yjy = − s3e

2s1d − 6uxFx − 6uyFy,

s44cd

]t0
jx + ]xF1

3
r +

jx
2

r
G + ]yf jxj y/rg = Fx, s44dd

− ]t0
jx + ]xF−

1

3
r +

− jx
2 + j y

2

r
G + ]yf jxj y/rg

= − s5qx
s1d − Fx, s44ed

]t0
j y + ]xf jxj y/rg + ]yF1

3
r +

j y
2

r
G = Fy, s44fd

− ]t0
j y + ]xf jxj y/rg + ]yF−

1

3
r +

jx
2 − j y

2

r
G = − s7qy

s1d − Fy,

s44gd
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]t0
fs jx

2 − j y
2d/rg +

2

3
]xjx −

2

3
]yjy = − s8pxx

s1d + 2uxFx − 2uyFy,

s44hd

]t0
f jxj y/rg +

1

3
]xjy +

1

3
]yjx = − s9pxy

s1d + uyFx + uxFy.

s44id

Now writing out the equations for the conserved moments of
Eq. s42cd, the following are obtained:

]t1
r = 0, s45ad

]t1
jx + ]xF1

6
S1 −

1

2
s2Des1d +

1

2
S1 −

1

2
s8Dpxx

s1dG
+ ]yFS1 −

1

2
s9Dpxy

s1dG = 0, s45bd

]t1
j y + ]xFS1 −

1

2
s9Dpxy

s1dG + ]yF1

6
S1 −

1

2
s2Des1d

−
1

2
S1 −

1

2
s8Dpxx

s1dG = 0. s45cd

Adding Eq.s44ad and« times Eq.s45ad yields the continuity
equation

]tr + ]xjx + ]yjy = 0. s46d

Adding Eq.s44dd and« times Eq.s45bd and substituting for
pxx

s1d and pxy
s1d using Eqs.s44hd and s44id, the following

equation is obtained:

]t j x + ]xS1

3
r + jx

2/rD + ]ys jxj y/rd

= Fx − «
1

6
S1 −

1

2
s2D]xe

s1d − «
1

2
S1 −

1

2
s8D 1

s8
]x

3F2uxFx − 2uyFy − ]t0
S jx

2 − j y
2

r
D −

2

3
]xjx +

2

3
]yjyG

− «S1 −
1

2
s9D 1

s9
]yFuyFx + uxFy − ]t0S jxj y

r
D

−
1

3
]xjy −

1

3
]yjxG . s47d

Adding Eq.s44fd and« times Eq.s45cd and substituting for
pxx

s1d andpxy
s1d using Eqs.s44hd and s44id, the following equa-

tion is obtained:

]t j y + ]xs jxj y/rd + ]yS1

3
r + j y

2/rD
= Fy − «

1

6
S1 −

1

2
s2D]ye

s1d + «
1

2
S1 −

1

2
s8D 1

s8
]x

3F2uxFx − 2uyFy − ]t0
S jx

2 − j y
2

r
D −

2

3
]xjx +

2

3
]yjyG

− «S1 −
1

2
s9D 1

s9
]yFuyFx + uxFy − ]t0S jxj y

r
D

−
1

3
]xjy −

1

3
]yjxG . s48d

In order to evaluate the order of the term«]xe
s1d, we rear-

range Eq.s44bd and use Eq.s44ad to determine]t0
r, which

gives

es1d =
1

s2
F6uxFx + 6uyFy − 2s]xjx + ]yjyd − 3]t0

S jx
2 + j y

2

r
DG .

s49d

Expanding the terms]t0
jx
2 and]t0

j y
2 and using Eqs.s44dd and

s44fd, while ignoring terms of orderMa3, yields

]t0
S jx

2

r
D = 2uxF− ]xS1

3
r +

jx
2

r
D − ]yS jxj y

r
D + FxG , s50d

]t0
S j y

2

r
D = 2uyF− ]yS1

3
r +

j y
2

r
D − ]xS jxj y

r
D + FyG . s51d

Using Eqs.s50d ands51d and ignoring higher-order terms of
the formux]xsuxjxd, Eq. s49d can be written as

es1d =
1

s2
f− 2]xjx − 2]yjyg. s52d

Equations52d can be shown to be small in the incompress-
ible limit making this term negligible, but we shall retain this
term to illustrate how the constants2 is related to the bulk
viscosity. Similarly, reduced forms can be determined forpxx

s1d

andpxy
s1d—i.e.,

pxx
s1d =

1

s8
F− ]xS2

3
jxD + ]yS2

3
j yDG , s53d

pxy
s1d =

1

s9
F− ]xS1

3
j yD − ]yS1

3
jxDG . s54d

These terms cannot be neglected because the 1/3 factor rep-
resents the nondimensional speed of sound,cs

2=1/3, which
decreases the order of the terms. Now Eqs.s47d ands48d can
be rewritten as the following usings8=s9=1/t and substitut-
ing in for Fx andFy:

]t j x + jx]xux + j y]yux = − ]xp + kr]x¹
2r + n¹2jx

+ z]xs]xjx + ]yjyd, s55d

]t j y + jx]xuy + j y]yuy = − ]yp + kr]y¹
2r + n¹2j y

+ z]ys]xjx + ]yjyd, s56d

where«=dt, 1 /3=cs
2,

n = cs
2dtSt −

1

2
D , s57d

z = cs
2dtS 1

s2
−

1

2
D , s58d
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p = cs
2r + csrd. s59d

V. EVALUATION OF THE MODEL

The first step in evaluating the model is to determine the
index function limitsfl and fg and determine the value of
Isad in Eq. s22d. Both of these can be obtained by solving a
“two-layer” problem where initially the fluids at two differ-
ent densities are separated by a horizontal boundary in a
domain with periodic boundary conditions on the sides and
infinite boundary conditions on the top and bottom. The val-
ues offl andfg from Maxwell’s equal-area rule should be
used as initial values for the index function of the corre-
sponding fluid. The fluid is allowed to come equilibrium.
Then, the value ofIsad can be determined by the numerical
integration off along the direction perpendicular to the in-
terface according to Eq.s22d. The equilibrium values will
depend on the numerical scheme employed for calculating
the gradient and Laplacian terms in Eqs.s6d, s24d, ands29d.
The results from this model and other two-phase LBM mod-
els have shown a large dependence on numerical schemes
f21g. We have found that the use of a hybrid scheme for
calculating gradients produces desirable results for a wide
range of surface tension and viscosity values. In this work,
the Laplacian is computed using a nine-point stencil—i.e.,

¹2f =
1

6dx
2ffsi+1,j+1d + fsi+1,j−1d + fsi−1,j+1d + fsi−1,j−1d

+ 4fsi,j+1d + 4fsi,j−1d + 4fsi+1,jd + 4fsi−1,jd − 20fsi,jdg.

s60d

The gradients are calculated using a hybrid method where
the sixth-order central difference method gets 75% weighting
and is given by

]ic =
1

60dx
f− csi−3,jd + 9csi−2,jd − 45csi−1,jd + 45csi+1,jd

− 9csi+2,jd + csi+3,jdg. s61d

A 25% weighting is given to a fourth-order method based
upon Taylor series expansions in velocity space—i.e.,

]ic =
1

36cdx
o
a=1

8

ea,if8csx + eadtd − csx + 2eadtdg. s62d

For the hybrid scheme the equilibrium values of the index
function limits arefg=0.022 55 andfl =0.250 08, andIs4d
=0.0152 based upon computations of the “two-layer” prob-
lem with aa=b=4 in Eq. s7d.

The surface tension predicted by Eq.s22d can be com-
pared to the results of a numerical experimentf22–25g. A
computational domain of 2003200 with periodic boundary
conditions is set up with a two-dimensionals2Dd “drop” in
the middle of the domain withk=0.1, which corresponds to
a surface tension of 0.001 52. Four different size drops are
employed with radii of approximately 20, 30, 40, and 50.
After the liquid drop reaches equilibrium the surface tension
is calculated from Laplace’s laws / r =spin−poutd. Figure 1

compares the analytical pressure difference from Laplace’s
law to that computed by the MRT model. The largest error
compared to theoretical value is 12% at 1/r =0.025 while the
other errors are under 6%.

Next, the index function MRT model is employed to solve
an oscillating liquid cylinder problem. An initial elliptical
cross section is given to the liquid withk=0.05, 0.1, and 0.2
and liquid densities of 0.2 and 1. The density ratio is 10, and
the viscosity is 0.006 75 for all computations. Figure 2 illus-
trates the amplitude of the oscillations with dimensionless
time for k=0.2 andrl =0.2. Lambf26g performed an analyti-
cal study of an invisid liquid cylinder oscillating without the
influence of an ambient gas. The frequency of oscillation
predicted by Lambf26g is given by

FIG. 1. Pressure change due to surface tension versus the in-
verse of radius for a 2D “drop.”

FIG. 2. Amplitude of oscillation versus time for a liquid cylin-
der srl =0.2,s=0.003 04,n=0.006 75d.
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v2 = nsn2 − 1d
s

rlr
3 , s63d

wheren=2 for an initially elliptical cross section andr is the
equilibrium radius. Figure 3 compares the analytical solution
of Lamb to the oscillation frequencies obtained from the
computations. All of the oscillation frequencies are approxi-
mately 3% lower than their corresponding analytical values.
More accurate solutions are expected for computations with
higher density ratios since the analytical solution is for os-
cillations without an ambient fluid. However, higher density
ratios were not numerically stable for the viscosity employed
sn=0.006 75d. This limitation on density ratio is not a prob-
lem specific to the work here, but is well recognized as one
of the challenges with the LBM methods for two-phase flow.
Premnathf27g has suggested that the numerical instability
associated with the LBM at higher density ratios is related
the pseudocompressible nature of the method. This appears
to cause small fluctuations in density to lead to fluctuations
in velocity, which in turn lead to instabilities. The use of
multiple relaxation times may increase the sensitivity of the
density ratio to numerical stability.

The index function, MRT model is also employed to
simulate capillary waves with a small amplitude and long
wavelength. Other authorsf18,25g have performed similar
numerical experiments. Initially, a sinusoidal perturbation
with an amplitude of 5% of the wavelength is given to a
liquid. Under the influence of surface tension, the wave os-
cillates with a decaying amplitude due to viscosity until the
fluid is at rest. Chandrasekharf28g derived an analytical so-
lution for the oscillation frequency and decay rate of wave
amplitude. The solution involves finding the roots of the
equation

y4 + 4a1a2y
3 + 2s1 − 6a1a2dy2 − 4s1 − 3a1a2dy

+ s1 − 4a1a2d +
s

ksrl + rgdn2 = 0, s64d

where a1=rl / srl +rgd, a2=rg/ srl +rgd, and k is the wave

number. The root with positive real and imaginary parts is
the only physically meaningful solution. The decay rate and
oscillating frequency are found from the imaginary and real
parts, respectively, of the expression

n = sy2 − 1dÎksrl + rgdn2

s
. s65d

In the computations, rl =0.2, rg=0.066 67, and k
=0.0491. The viscosity is varied fromn=0.1 to 0.000 85,
and the surface tension iss=0.001 52 for all computations.
The domain size is 1293129. Figure 4 shows the change in
amplitude of the capillary wave along with the decay rate
when n=0.003 38. Figure 5 compares the oscillation fre-
quency and decay rate computed by the index function, MRT
LBM, and the index function, BGK LBMf1g, to those pre-
dicted by Chandrasekhar for the various viscosities versus
the ratio of Reynolds to capillary number,s=s / fksrl

+rgdn2g. Both models predict the oscillation frequency and
decay rate within 8% of their corresponding analytical solu-

FIG. 3. Comparison of computed oscillation frequencies to
those predicted by Lambf26g for liquid cylinders with initially
elliptic cross sections.

FIG. 4. Oscillation amplitude of a capillary wave versus time
using the index function, MRT LBMsrl =0.2,rg=0.06667,s
=0.001 52,n=0.003 38d.

FIG. 5. Oscillation frequency and decay rate versus ratio of
Reynolds to capillary numbers.
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tions for s,161. However, the BGK model is numerically
unstable for capillary wave simulations withnø0.0135. The
MRT model gives stable solutions fornù0.000 85 for this
computational problem or about a factor of 16 times lower
than the BGK model.

VI. DISCUSSION AND CONCLUSIONS

In this paper, we have proposed a MRT LBM model for
simulating multiphase flows. The model uses a collision ma-
trix for calculating the effects of collisions in lieu of the
single-relaxation-time BGK model. The use of multiple re-
laxation times allows for different physical quantities to be
adjusted independently. It has been suggested that the propa-
gation of sound waves in the BGK model leads to numerical
instability. The MRT model has separate adjustable relax-
ation times for the shear and bulk viscosities as well adjust-
able parameters for heat flux coefficients. Enhanced numeri-
cal stability has been observed by optimally tuning these
constants. For ease of use in practical computations, an index
function form of the MRT model was also developed. This
approach uses one kinetic equation to track the location of
liquid in a manner similar to VOF or level sets and another
kinetic equation to determine the evolution of pressure and
momentum. The MRT model was shown to follow the mac-
roscopic hydrodynamic equations in the macroscopic limit

via a multiscale expansion. The index function, MRT model
was then evaluated for accuracy on several test problems
including Laplace’s law for 2D “drops,” oscillating liquid
cylinders, and capillary waves. The pressure change across
the interface of the 2D “drops” was within 6% of the pre-
dicted value based upon Laplace’s law for most cases. The
oscillation frequency of the liquid cylinders was within 4%
of the analytical solution for all computations. The capillary
wave computations illustrated the enhanced numerical stabil-
ity of the MRT model compared to the corresponding BGK
model in that the MRT model was able to achieve stable
results at lower viscosities. Both the MRT and BGK models
predicted oscillation frequencies and decay rates within 8%
of their analytical values fors,160 wheres is the ratio of
Reynolds to capillary number. The MRT model proposed in
this work has been employed to perform initial studies of
liquid breakupf21g.
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